在当今智能网络物理系统时代,由于它们在复杂的现实世界应用中的最新性能,深度神经网络(DNN)已无处不在。这些网络的高计算复杂性转化为增加的能源消耗,这是在资源受限系统中部署大型DNN的首要障碍。通过培训后量化实现的定点(FP)实现通常用于减少这些网络的能源消耗。但是,FP中的均匀量化间隔将数据结构的位宽度限制为大值,因为需要以足够的分辨率来表示大多数数字并避免较高的量化误差。在本文中,我们利用了关键见解,即(在大多数情况下)DNN的权重和激活主要集中在零接近零,只有少数几个具有较大的幅度。我们提出了Conlocnn,该框架是通过利用来实现节能低精度深度卷积神经网络推断的框架:(1)重量的不均匀量化,以简化复杂的乘法操作的简化; (2)激活值之间的相关性,可以在低成本的情况下以低成本进行部分补偿,而无需任何运行时开销。为了显着从不均匀的量化中受益,我们还提出了一种新颖的数据表示格式,编码低精度二进制签名数字,以压缩重量的位宽度,同时确保直接使用编码的权重来使用新颖的多重和处理 - 积累(MAC)单元设计。
translated by 谷歌翻译
过渡到成年是许多家庭的重要生活阶段。先前的研究表明,具有智力或发展的年轻人(IDD)比同龄人面临的挑战更多。这项研究是为了探索如何使用自然语言处理(NLP)方法,尤其是无监督的机器学习,以帮助心理学家分析情绪和情感,并使用主题建模来确定年轻人IDD及其家人所拥有的常见问题和挑战。此外,将结果与从没有IDD的年轻人那里获得的结果进行了比较。研究结果表明,NLP方法对于心理学家分析情绪,进行跨案例分析并从对话数据中汇总关键主题非常有用。我们的Python代码可在https://github.com/mlaricheva/emotion_topic_modeling上找到。
translated by 谷歌翻译
会话数据在心理学中至关重要,因为它可以帮助研究人员了解个人的认知过程,情感和行为。话语标签是分析此类数据的常见策略。 NLP算法的开发使研究人员可以自动化此任务。但是,心理对话数据给NLP研究人员带来了一些挑战,包括多标签分类,大量类别和有限的可用数据。这项研究探讨了NLP方法生成的自动标签如何与人类在成年过渡的对话的背景下与人类标签相媲美。我们提出了应对心理学研究中提出的三个共同挑战的策略。我们的发现表明,具有领域适应性的深度学习方法(Roberta-Con)优于所有其他机器学习方法。我们提出的分层标签系统被证明可帮助研究人员战略性地分析对话数据。我们的Python代码和NLP模型可在https://github.com/mlaricheva/automated_labeling上获得。
translated by 谷歌翻译
乳腺癌是最常见的癌症,并寄存癌症的妇女的最多死亡人数。结合大规模筛查政策的诊断活动的最新进展显着降低了乳腺癌患者的死亡率。然而,病理学家手动检查病理学家的载玻片是麻烦的,耗时的,并且受到显着的和观察者内的变异性。最近,全幻灯片扫描系统的出现授权了病理幻灯片的快速数字化,并启用了开发数字工作流程。这些进步进一步使利用人工智能(AI)来协助,自动化和增强病理诊断。但是AI技术,尤其是深度学习(DL),需要大量的高质量注释数据来学习。构建此类任务特定的数据集造成了几个挑战,例如数据获取级别约束,耗时和昂贵的注释,以及私人信息的匿名化。在本文中,我们介绍了乳腺癌亚型(BRACS)DataSet,一个大队列的注释血清杂环蛋白和eosin(H&E) - 染色的图像,以促进乳房病变的表征。 BRACS包含547个全幻灯片图像(WSIS),并从WSI中提取4539个兴趣区域(ROI)。每个WSI和各自的ROI都是通过三个董事会认证的病理学家的共识注释为不同的病变类别。具体而言,Bracs包括三种病变类型,即良性,恶性和非典型,其进一步亚级分为七个类别。据我们所知,这是WSI和ROI水平的最大的乳腺癌亚型的附带数据集。此外,通过包括被升值的非典型病变,Bracs提供了利用AI更好地理解其特征的独特机会。
translated by 谷歌翻译
图形神经网络(GNNS)是图形处理的广泛连接主义模型。它们对每个节点及其邻居进行迭代消息传递操作,以解决分类/群集任务 - 在某些节点或整个图表上 - 无论其订单如何,都会收集所有此类消息。尽管属于该类的各种模型之间的差异,但大多数基于本地聚合机制和直观地采用相同的计算方案,并直观地,本地计算框架主要负责GNN的表现力。在本文中,我们证明了Weisfeiler - Lehman测试在恰好对应于原始GNN模型上定义的展开等价的图表节点上引起了等效关系。因此,原始GNN的表现力的结果可以扩展到一般GNN,其在​​温和条件下可以证明能够以概率和最高的任何精度近似于朝向展开等价的图表中的任何功能。
translated by 谷歌翻译
Many challenging reinforcement learning (RL) problems require designing a distribution of tasks that can be applied to train effective policies. This distribution of tasks can be specified by the curriculum. A curriculum is meant to improve the results of learning and accelerate it. We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning, where a task sequence is created based on the success rate of each task. In this setting, each task is an algorithmically created environment instance with a unique configuration. The algorithm selects the order of tasks that provide the fastest learning for agents. The probability of selecting any of the tasks for the next stage of learning is determined by evaluating its performance score in previous stages. Experiments were carried out in the Partially Observable Grid Environment for Multiple Agents (POGEMA) and Procgen benchmark. We demonstrate that SITP matches or surpasses the results of other curriculum design methods. Our method can be implemented with handful of minor modifications to any standard RL framework and provides useful prioritization with minimal computational overhead.
translated by 谷歌翻译
This paper presents a solution to the GenChal 2022 shared task dedicated to feedback comment generation for writing learning. In terms of this task given a text with an error and a span of the error, a system generates an explanatory note that helps the writer (language learner) to improve their writing skills. Our solution is based on fine-tuning the T5 model on the initial dataset augmented according to syntactical dependencies of the words located within indicated error span. The solution of our team "nigula" obtained second place according to manual evaluation by the organizers.
translated by 谷歌翻译
Background: Image analysis applications in digital pathology include various methods for segmenting regions of interest. Their identification is one of the most complex steps, and therefore of great interest for the study of robust methods that do not necessarily rely on a machine learning (ML) approach. Method: A fully automatic and optimized segmentation process for different datasets is a prerequisite for classifying and diagnosing Indirect ImmunoFluorescence (IIF) raw data. This study describes a deterministic computational neuroscience approach for identifying cells and nuclei. It is far from the conventional neural network approach, but it is equivalent to their quantitative and qualitative performance, and it is also solid to adversative noise. The method is robust, based on formally correct functions, and does not suffer from tuning on specific data sets. Results: This work demonstrates the robustness of the method against the variability of parameters, such as image size, mode, and signal-to-noise ratio. We validated the method on two datasets (Neuroblastoma and NucleusSegData) using images annotated by independent medical doctors. Conclusions: The definition of deterministic and formally correct methods, from a functional to a structural point of view, guarantees the achievement of optimized and functionally correct results. The excellent performance of our deterministic method (NeuronalAlg) to segment cells and nuclei from fluorescence images was measured with quantitative indicators and compared with those achieved by three published ML approaches.
translated by 谷歌翻译
The task of reconstructing 3D human motion has wideranging applications. The gold standard Motion capture (MoCap) systems are accurate but inaccessible to the general public due to their cost, hardware and space constraints. In contrast, monocular human mesh recovery (HMR) methods are much more accessible than MoCap as they take single-view videos as inputs. Replacing the multi-view Mo- Cap systems with a monocular HMR method would break the current barriers to collecting accurate 3D motion thus making exciting applications like motion analysis and motiondriven animation accessible to the general public. However, performance of existing HMR methods degrade when the video contains challenging and dynamic motion that is not in existing MoCap datasets used for training. This reduces its appeal as dynamic motion is frequently the target in 3D motion recovery in the aforementioned applications. Our study aims to bridge the gap between monocular HMR and multi-view MoCap systems by leveraging information shared across multiple video instances of the same action. We introduce the Neural Motion (NeMo) field. It is optimized to represent the underlying 3D motions across a set of videos of the same action. Empirically, we show that NeMo can recover 3D motion in sports using videos from the Penn Action dataset, where NeMo outperforms existing HMR methods in terms of 2D keypoint detection. To further validate NeMo using 3D metrics, we collected a small MoCap dataset mimicking actions in Penn Action,and show that NeMo achieves better 3D reconstruction compared to various baselines.
translated by 谷歌翻译
Model calibration, which is concerned with how frequently the model predicts correctly, not only plays a vital part in statistical model design, but also has substantial practical applications, such as optimal decision-making in the real world. However, it has been discovered that modern deep neural networks are generally poorly calibrated due to the overestimation (or underestimation) of predictive confidence, which is closely related to overfitting. In this paper, we propose Annealing Double-Head, a simple-to-implement but highly effective architecture for calibrating the DNN during training. To be precise, we construct an additional calibration head-a shallow neural network that typically has one latent layer-on top of the last latent layer in the normal model to map the logits to the aligned confidence. Furthermore, a simple Annealing technique that dynamically scales the logits by calibration head in training procedure is developed to improve its performance. Under both the in-distribution and distributional shift circumstances, we exhaustively evaluate our Annealing Double-Head architecture on multiple pairs of contemporary DNN architectures and vision and speech datasets. We demonstrate that our method achieves state-of-the-art model calibration performance without post-processing while simultaneously providing comparable predictive accuracy in comparison to other recently proposed calibration methods on a range of learning tasks.
translated by 谷歌翻译